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Overview

1. What's the point?



What's the point?

Properties of u
u carries several implications for behaviour (warranted or not)

Undertanding implications often allows testing model through its identifying
assumptions

Models as maps, simplified description of reality
Behavioural implications = Empirical content
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Notation

Throughout: (X, d) is metric space
Open e-neighbourhood of x in X: Be(x) :={y € X | d(x,y) < &}
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Overview

2. Continuity



Continuity

Why continuity? Technical property, guarantees arg max,c u(x) 7 for A compact

— Choices of decision-maker (DM) well-defined

Weierstrass Extreme Value Theorem

Let (X,dy) and (Y, dy) be two metric spaces. If f : X — Y is a continuous function and
Sacompact setin (X, dy), then f attains a maximum and a minimum in S:

arg maxycs f(x) 7 0 and arg min, 5 f(x) 7 0.
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Continuity of Preferences

{ Definition

A preference relation = on X is continuous if for any two converging sequences,
{Xntn, {yntn € X, xn — xand yn — y, such that xn = yn Vn, we have x = y.

Lemma

Let = be a preference relation on X, and = its asymmetric part. The following state-
ments are equivalent:

(i) zis continuous;

(i) Vx € X, X~ and X», are closed;

)
(i) ¥x € X, Xxs- and X, are open;
(iv) Wx,y € X x>y, Fe>0st VX €Be(X),y €Bely), X =y

(Left as an exercise.)
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Continuous Utility Representation

Debreu’s Theorem (1954, 1964)

Let - be a preference relation on X, and suppose X admits a countable, =~-dense subset
Z. Then, zZ is continuous <= Z admits a continuous utility representationu : X — R.

Debreu'’s theorem is one of the most fundamental results in economics.

The theorem requires only X be a topological space that is (i) separable (admitting a
countable, dense subset) and (i) connected (not represented by the union of disjoint
nonempty sets).

We'll prove the following (easier) version:

Debreu’s Theorem (1954, 1964)

Let (X, d) be a convex metric space s.t. Va. € [0,1], d(ox + (1 - @)y, y) > ad(x,y). Let =
be a preference relation on X, and suppose X admits a countable, =-dense subset Z.
Then, = is continuous <= - admits a continuous utility representation u : X — R.
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Continuous Utility Representation

Proof

<« : (if)

Take any {xn}n,{yn}n € X s.t. xn = X, ¥n — y,and xn = yn.

Then, u(xn) = u(yn) > 0, Vn.

By continuity of u, limn— oo U(xn) = u(yn) = u(x) —u(y) >0 = x V.
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Continuous Utility Representation

Proof

= (onlyif)
Assume 3x,y € X : x = y (ow just set u(x) = c).
We will prove this part in three steps:

1. ShowVx,y e X x>y, Iz€eZ:x=2z>y.

2. Construct a utility function u : X — R s.t. u(2) is dense in [0, 1].
3. Show uis continuous.
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Continuous Utility Representation

Proof
= :(onlyif) 1.ShowVx,y e X: x>y, 3z€Z:x>2z>y.
() WIS3IX eX:x=x =y
e Fora € [0,1], let xa := ax + (1 - a)y € X (by convexity of X).
e DefineA:={a€[0,1] | xa — x}and o := infA.
A nonempty and bounded below: 1 € A (.- 5 complete); 0 ¢ A (.- x = y)
e WTS X¢ ~ X. Suppose not.
If Xo = X = Je>0: Xq—e = X by continuity Lemma
—oa-€e€A
= a 7infA,
a contradiction. If instead,
X > Xo, => 3’ >0: x> Xqre, VO<e <€ by continuity Lemma
= o +e<infA
= a 7infA,
again a contradiction. = x ~ xg, (by completeness).
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Continuous Utility Representation

Proof
= :(onlyif) 1.ShowVx,y e X: x>y, 3z€Z:x>2z>y.
() WIS3IX eX:x=x =y

e Forae[0,1], letxs:=ax+(1-a)y € X.
DefineA:={a €[0,1] | xa =~ x} and o := inf A.

~

® Xo ~ X.
e By definition:
X~Xg =y = o>0
—vo' € (0,0),a ¢A (. o=infA)
= X = Xy (" completeness)

By continuity Lemma, 3¢’ > 0 s.t. VX’ € By (Xo)

= A€ (0,1) dAxa + (1= Ay, Xa) < (1= N)d(x0,y) < €.
Define o’ := Ao € (0, ).

o ¢ Aand Xy € Ber(Xa) = X > Xz > ¥
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Continuous Utility Representation

Proof

= :(onlyif) 1.ShowVx,y e X: x>y, 3z€Z:x>2z>y.
() WTSAX eX:x=x =y

(i) FindzeZ:x>=z»y.
o Zisr-denseinX: Xy >y = IZE€Z: Xy Z>Y

= Vel XXy TZ>Y
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Continuous Utility Representation

Proof

= :(onlyif) 1.ShowVx,y eX: x>y, 3z€eZ: x>z>y.
2. Construct a utility function v : X — R s.t. u(2) is dense in [0, 1].

Remove maximal and minimal elements of X from Z: Zn(arg maxs XUarg miny X) = (.

(i) Fix order on Z = {zq1,z,..} and let Zn = {zq,..,zy—1} for n > 2. Define uon Z
recursively.

u(zq) =1/2. Forn>1,
(@) if 3zm € Zn st. zn ~ zm, set u(zn) = u(zm);
(b) if zn > zm VZm € Zn, then set u(zn) = (1+ Max,ez, u(2))/2;
(¢)if zm > zn Vzm € Zn, then set u(zn) := (0 + min,cz, u(2))/2;
(d) if neither (a)-(c) hold, then 3zy,zm € Zn st zp = zn = zm and
32 €Zn:zp =2 zaNOr Zn > Z > Zm,
and in such case set u(zn) == (Min,cz, 7o 7, U(Z) + MaXzez, 7 w7 U(2))/2.
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Continuous Utility Representation

Proof

= :(onlyif) 1.ShowVx,y eX: x>y, 3z€eZ: x>z>y.
2. Construct a utility function v : X — R s.t. u(Z) is dense in [0, 1].

Remove maximal and minimal elements of X from Z: Zn(arg maxs XUarg miny X) = (.
(i) Fix order on Z = {zq1,z5,..} and let Z, = {zq, ...z} for n > 2. Define uon Z
recursively.
(i) WTS u(Z) is densein [0, 1].
e Byl,VxyeX x>y 3zeZ:x>z>y.
= Vzn,Zm € Zst. zn > zZm, thereis ¢,¢',¢"” > n,m suchthatzy > zn > zp >
Zm > Zypn
where z, and z, exist because we removed the maximal and minimal
elements of X from Z

e By construction, u(Z) = set of dyadic numbers in (0,1) := {m/2" | m,n €
N, m < 2"}, which is dense in [0, 1].
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Continuous Utility Representation

Proof

= :(onlyif) 1.ShowVx,y eX: x>y, 3z€eZ: x>z>y.
2. Construct a utility function v : X — R s.t. u(2) is dense in [0, 1].

Remove maximal and minimal elements of X from Z: Zn(arg maxs XUarg miny X) = (.

(i) Fix order on Z = {zq1,z,..} and let Zn = {zq,..,zy—1} for n > 2. Define uon Z
recursively.

(i) WTS u(Z) is densein [0, 1].
(i) WT extend u to X.
e Vx € argmaxs X and Vy € argmins X we can assign u(x) := 1 and

u(y) := 0.

e Setu(x) =sup{u(@) | z € Zand x = z} = sUp,cz,, U2).
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Continuous Utility Representation

Proof

= :(onlyif) 1.ShowVx,y eX: x>y, 3z€eZ: x>z>y.
2. Construct a utility function v : X — R s.t. u(Z) is dense in [0, 1].

Remove maximal and minimal elements of X from Z: Zn(arg maxs XUarg miny X) = (.

(i) Fix order on Z = {zq1,z5,..} and let Z, = {zq, ...z} for n > 2. Define uon Z
recursively.

(i) WTS u(Z) is densein [0, 1].
(i) WT extend uto X.
(iv) WTS u represents =,
eBylx>=y = 377 €Zst x=z+7 =y = ukx) > ul2 >
u@) > uly).
e By definition, x ~ y = u(x) = u(y).
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Continuous Utility Representation

Proof

= :(onlyif) 1.ShowVx,y eX: x>y, 3z€eZ: x>z>y.
2. Construct a utility function u : X — R s.t. u(2) is dense in [0, 1].
3. Show u is continuous.

(i) Takeanyx € X\ (arg max- X U arg m|n> X).
e Byl.and2, foranys >0,327 €7 u(x)—e < u(2) < ux) < uZ') < uX)+e.

e By continuity Lemma, 38 > 0 : VX' € Bs(x), u(x) — & < u(2) < u(x’) < u(@’) <
ux) +e

(i) Take any x € (argmaxs X U argmins X).
e Suppose x € argmaxs X.

e Byl and2,foranye>0,3ze€ Z:1-e=ux) —e<u(z) <ulx) =1
e By continuity Lemma, 38 > 0 : ¥x’ € Bs(x), u(x) — & < u(x’) < u(x) = 1.

e Argument for x € arg min, X is symmetric.
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Continuous Utility Representation

Existence of a continuous u-representation does not mean that any utility
representation of = is continuous.

Example: ~C [0,2% :x =y <= x>V.
u = id represents =, but so does discontinuous function
VIiX— 1{X<1} X+ 1{X=1) 2+ 1{X>1} 3x
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Overview

3. Convexity



Convexity

Definition

A real-valued function u on a convex set X is (strictly) quasiconcave if vx,y € X and
VA € [0,1] (resp. A € (0,1)), uAx + (1= Ay)) > (>) min{u(x), u(y)}.

( Definition

A preference relation = on a convex set X is convex iff for any x = y and any A € [0, 1],
we have thatAx+ (1 - L)y = y.
It is strictly convex if, in addition, Vx 5 y, x Zy,and any A € (0,1), Ax+ (1= A)y = y.

Choose mixtures over extremes.
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Convexity

{ Proposition

Let - be preference relation on convex set X and u : X — R a utility representation. The
following statements are equivalent:
(i) = is convex;

(ii) X, is convexVy € X;
(i) uis quasiconcave;

(iv) {x € X | u(x) > U}isconvex Vu € R.
Moreover, = is strictly convex if and only if u is strictly quasiconcave.
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Convexity

Proof

(i) Z is convex == (ii) X~ is convex Vy € X:
Takeany x,x' € X, and let, without loss of generality (by completeness), x = x’.
Then Ax + (1= A)x" = X’ = y VA € [0,1] (by convexity and transitivity).

(i) Z is convex <= (ii) X~ is convex Vy € X:
By completeness, y € X»-,.
Xy, is convex = Vx € X»-, and A € 0,1, A+(1-Ny =y

~
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Convexity

Proof

(i) = is convex <= (iii) uis quasiconcave:
Take any x,y € X suchthatx =y <= u(x) > u(y),and any A € [0,1].

= convex <= Ax+(1-Ny=zy
— UM+ (1=2A)y) > u(y) = min{u(x), u(y)}
<= U quasiconcave.

For strict convexity of 2 and strict quasiconcavity of u, replace = and > with > and >.

Gongalves (UCL) 2. Structural Properties of Utility Representations
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Convexity

Proof

(iii) u is quasiconcave = (iv) {x € X | u(x) > U} is convex VU € R:
vx,y € X u(x),uly) > 1,
u(x + (1=2A)y) > min{u(x), u(y)} > U, VA € [0,1] (by quasiconcavity of u).

(iii) u is quasiconcave <= (iv) {x € X | u(x) > U} is convex VU € R:

Takeany x,y € X.

{z € X | u@) > min{u(x), u(y)}} convex

= VA [0, 1, Ax+(1-Ay e{zeX | u@ >min{uX),uly)};

= u(lx+(1-2A)y) > min{u(x), u(y)}. O
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Convexity of Preferences and Choice

Theorem

Let = be a convex preference relation on a convex set X.
Then, for any convex A € 2%, argmaxs A is convex.

If, in addition, = is strictly convex, then arg maxs A contains at most one element.

(Proof is left as an exercise.)
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22



Overview

4. Monotonicity and Insatiability



Monotonicity and Insatiability

Monotonicity: choose more over less (e.g., money)

Notation: for clarity, x >y <= x;>y; Vi
(> can be mistaken with the asymmetric part of >)

{ Definition

0) =
(i) z is strongly monotone iff x > (>)y = x Z (>)y;
—

(i)

is monotone iffx >y — x = y;

is strictly monotone iff x >y (ie,x > yandx 7y) = x> y.

{ Proposition

(i) = is monotone if and only if x >y = u(x) > u(y);
(i) = is strongly monotone if and only if x > (>)y = u(x) > (>)u(y);

(iii) = is strictly monotone if and only if x > y (x > yand x 7y) = u(x) > u(y).

Let = be preference relation on X C RKand u: X — R a utility representation of z.

Gongalves (UCL) 2. Structural Properties of Utility Representations
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Monotonicity and Insatiability

Definition

Let = be a preference relation on X C Rfandu:X —»Ra utility representation of =.

(i) = is globally non-satiated iff Yx € X,3y € X : y = x.
(i) = is locally non-satiated iff Vx € X and e > 0,3y € Be(X) 1 y = x.

‘Insatiability: improvability
e strict monotonicity = strong monotonicity = monotonicity

e strong monotonicity = local non-satiation = global non-satiation

Gongalves (UCL) 2. Structural Properties of Utility Representations
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Overview

5. Homotheticity



Homotheticity

Definition

A preference relation = on X = R¥ is homothetic iff x = y = ox = ay, Vo > 0.

Property that is quite important for aggregate demand to behave as if arising from
choices of a representative consumer.

Proposition

Let - be a continuous, homothetic, and strongly monotone preference relation on X =
RX. Then, it admits a continuous utility representation u : X — R+ that is homogeneous
of degree one.

(Proof is left as an exercise.)

Examples Examples of known utility functional forms that imply homothetic
preferences?

How should we change the conditions of the propositon to get u as homogeneous of
degree 2?7 And degree k > 1?
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Overview

6. Separability



Separability

Often we alternatives have different dimensions which are assessed separately.
‘All else equal’...

e Choose job with better pay over job with less pay.

e Choose laptop with more memory over laptop with less memory.

Not necessarily monotone:

e Choose phone with dimensions closer to my ideal dimensions.
(Not larger phone is better, nor smaller phone is better.
Maybe even multiple ideal points: want large phone or small phone, but not
intermediate nor too large nor too small.)

Not always true...

e Choosing dessert with more chocolate does not mean ‘all else equal’ | choose

more chocolate over less in all that | eat.

How to capture this? What implications does it have for utility representation? How to
test this from choice data?
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Weak Separability

Multi-dimensional alternatives: X := x;;X; x X, where each X; is a dimension and
N ={1,..n}k
All else: Write X_j € X_; 1= XX X Xand x = (x;,x_;).

Definition

A preference relation on X is weakly separable in x;.[,)X; iff, Vi € [n], ¥x;y; € X; and
VX y-i € Xo, (G x=) Z 0ix=i) = (y-) Z Wi y-)-

(Does this capture what we wanted it to capture? What do you expect the utility
representation to look like?)

Theorem

Let 2 be a preference relation on X = X[y X; x X admitting a utility representation
u:X—R.

% is weakly separable in x;c(,X; if and only if 3v, {uj};e(), such that

() Vi XjemuilXi) x X = Rand u; : X; = RV,

(i) u(x) = v(u1(x1), ..., un(xn),x), and

(iii) v is strictly increasing in its first n arguments.
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Weak Separability

{ Theorem

Let 2 be a preference relation on X = xc(nX; x X admitting a utility representation
u:X—R.
% is weakly separable in x;c ;1 X; if and only if 3v, {uj};c[, such that

)V XjemuilX) x X =R and Ui X; = RV,

(
(i) u(x) = v(tr(xa), .., un(xn), X), and
(

iii) v is strictly increasing in its first n arguments.

Proof

< : (if) Straightforward — left as an exercise.
= : (only if) We break the proof into steps
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Weak Separability

Proof

= (only if) We break the proof into steps:
(i) Define u;: Fixx™ € X. Fori € [n], let uj(x;) := u(x;, x*)).

(i) WTS: Wx,y € X

uix;) > uily) vi € In] <= ulx;

Vi1 Xis X s X, X) 22 (V10

<~ (1, ..

ie, (1) (x1,x9

2 0r.x2,

() 01.y2, ..

stx=y, uix)>uly)

vien = u() > uly).
Xi,‘) > U(y,',Xi,') Vi e [n]
yl'_'l,y,',X,'_;_‘],m,Xn,;) Vi S [n]

s X0, X) 2 (V1, X2, -0 X0, X)

yn*'I:Xﬂ:Y) i (y1:y2| ooy

X2, ...,Xn,Y) i’/ (y1,)/2,X2, e

Xn,Y)

Yn-1,Yn, X)

(1) = () = x=0q,X2, .. X0, X) 7 (V1. X2, - Xn, X) 7% (V1,Y2, -0 X0, X) 2T -+ -
Z 0 ye ayny) =y

=Xy

(by transitivity)

ux) > u(y).
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Weak Separability

{ Theorem

Let 2 be a preference relation on X = xc(nX; x X admitting a utility representation
u:X—R.

% is weakly separable in x;c ;1 X; if and only if 3v, {uj};c[, such that

(|) VX uilX) x X = Rand u; - X; — RV,

(i) u(x) = v(ur(xq). .., un(xn),X), and

(iii) v is strictly increasing in its first n arguments.

Proof

= : (only if) We break the proof into steps:
(i) Define u;: Fixx* € X. Fori € [n], let uj(x;) := u(x;, x*;).
(i) WTS:Vx,y e Xst.X=¥, u(x) > u(y;) Vi € [n] = ux) > u(y).
Moreover, if 3i : uj(x;) > u;(y;), then u(x) > u(y).
(iii) Definev: Foranyr e R™ :r; € ui(X;) Vi € [n], pick x; € X; s.t. ui(x;) = ;.
ForanyX € X, and forany r € XjemUilXi), let v(r,X) = u(x).
By (ii), v is strictly increasing in r.

Gongalves (UCL) 2. Structural Properties of Utility Representations 30



Separability

{ Theorem

Let 2 be a preference relation on X = xc(nX; x X admitting a utility representation
u:X—R.

% is weakly separable in x;c ;1 X; if and only if 3v, {uj};c[, such that

(i) v XjemuilXi) x X =R and Ui X; = RV,

(i) u(x) = v(ur(xq). .., un(xn),X), and

(iii) v is strictly increasing in its first n arguments.

Examples of known utility functional forms that imply weakly separable preferences?
What is the role of X?

Is additive utility (u(x) = >=; uj(x;)) weakly separable?

How should we change the conditions of the theorem to get additive utility?

Weak separability does not deliver additive separability...
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Strong Separability

Definition

A preference relation 2 on X = x;[,)X; is strongly separable if ¥/ C [n], Vx;,y; € ;¢
and Vx-,y- € XjepXi = X=j, we have that (x, x—) Z (V. x-1) <= (.y-1) Z (1. y-1)-

We now restrict to X = X ¢y Xi.
What else changed?
WEe'll also need the following:

{ Definition

i € [n]is an essential component if 3x;, y; € X;and x_; € X_; such that (x;, x_;) = (y;, x-;).

{ Theorem (Debreu 1960)

Let 2 be a preference relation on X = x,(,X; admitting a utility representation u : X —
R. Suppose there are at least three essential components.
% is strongly separable if and only if there are {uj};c[,;, Where u; © X; — R, such that

u(x) = Yieq Uilxy).

Gongalves (UCL) 2. Structural Properties of Utility Representations
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7. Quasilinearity



Quasilinearity

Quasilinear utility: v: Y x R — Rs.t. u(y,m) = v(y) +m,withv: Y — R.

Interpretation: y as specific good, m money (available to acquire other goods).

Recurrently assumed, e.g., in contract theory, auctions, and mechanism design.

What are we assuming when we write down a quasilinear utility function?

Gongalves (UCL) 2. Structural Properties of Utility Representations
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Quasilinearity

{ Theorem

Let = be a preference relation on Y x R. = admits a quasilinear utility representation if
and only if it satisfies the following properties:
(1) (moneyis good) WYy eY,mm' €R:
m >m < (y,m’) = (y.m),
(2) (no wealth effects) Vy,y' € Y, m,m’,m" e R:
y.m zZ ¢ m) <= ,m+m")Z (¢, m+m");

(8) (money can compensate)  Vy,y' € Y,3Im,m’ € Rst (y,m) ~ (y,m’).

Proof

= (only if):

M m>m < vy)+m >vly)+m < (,m) =z y.m),vyecY,mm €R
(£ good);

@2 ym =, m) = viy)+m>vy)+m = v)+m+m” >vy)+m' +
m’ = (y,m+m"”) = . m +m"), v,y €Y, mm' m’ R (no feffect),

() Wy,y' € Y,3m,m’ € Rsuchthatv(y)-v(y’) =m’-m < v(y)+m = v(y')+m’ <=
(y,m) ~ (y',m’) (£ compensate).
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Quasilinearity

Proof
«— (if): Fix (y*,m*) € Y x R.
Step1:3p: Y — Rst (y,ply) ~ ", m*).
o WTS existence
By (3 / £ compensate), 3m(y), m’'(y) € R: (y,m(y)) ~ (y*,m’(y)).
By (2 / no wealth effects), (y, m(y) = m’(y) + m*) ~ (y*, m*).
Define p(y) := m(y) — m’(y) + m*.
e WTS uniqueness
Suppose not unique: I3v #p: Y — Rst. (y,v(y)) ~ (y* m* )Wy e Y

p7v = I eY:iv)7pl/)
Suppose v(y') > p(y').  (argument for v(y') < p(y’) symmetric)

(1/ £good) implies:
Vi) > pl) = ¢/ vi) = . p0) ~ ' m*) ~ (V' V().
= (y',v(y")) = (v¥',v(y)), contradicting reflexivity of .
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Quasilinearity

Proof
<« (if): Fix (y*,m*) € Y x R.
Step1:Jlp: Y — Rs.t (y,py) ~ (y*,m*).
Step 2: Characterise v.
Define v(y) := —p(y). WTS quasilinear function represents .

v,m) z ¢/, m")
= (y,m-m'+p(y")) = (V. p(y))) ~ (y*,m*) Step1and (2/ no wealth effects)
= m-m'+ply) > ply) (1/ £ good)

= -ply)+m>—p(y)+m’
= vy)+m>vy)+m'.
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More

Homotheticity and structural change: Comin, Lashkari, & Mestieri (2021 Ecta).

Intertemporal choice and discounting: characterisation by Koopmans (1960 Ecta).

Discounted past and future discounting, anticipated regret, time inconsistency: Ray,
Vellodi, & Wang (2024 JEEA).

Time 7 risk preferences via quasilinear preferences: Alaoui & Penta (2024 WP).

Refere-dependence: Masatliogu & Ok (2005 JET), Salant & Rubinstein (2008 RES),
Apesteguia & Ballester (2009 ET), Dean, Kibris, & Masatlioglu (2017 JET), Lim (2024
WP).
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